Fixed Effects Testing in High-Dimensional Linear Mixed Models
نویسندگان
چکیده
منابع مشابه
Fixed effects testing in high-dimensional linear mixed models
Many scientific and engineering challenges – ranging from pharmacokinetic drug dosage allocation and personalized medicine to marketing mix (4Ps) recommendations – require an understanding of the unobserved heterogeneity in order to develop the best decision making-processes. In this paper, we develop a hypothesis test and the corresponding p-value for testing for the significance of the homoge...
متن کاملLinear Hypothesis Testing in Dense High-Dimensional Linear Models
We propose a methodology for testing linear hypothesis in high-dimensional linear models. The proposed test does not impose any restriction on the size of the model, i.e. model sparsity or the loading vector representing the hypothesis. Providing asymptotically valid methods for testing general linear functions of the regression parameters in high-dimensions is extremely challenging – especiall...
متن کاملHeritability estimation in high dimensional sparse linear mixed models
Abstract: Motivated by applications in genetic fields, we propose to estimate the heritability in high-dimensional sparse linear mixed models. The heritability determines how the variance is shared between the different random components of a linear mixed model. The main novelty of our approach is to consider that the random effects can be sparse, that is may contain null components, but we do ...
متن کاملTesting multiple variance components in linear mixed-effects models.
Testing zero variance components is one of the most challenging problems in the context of linear mixed-effects (LME) models. The usual asymptotic chi-square distribution of the likelihood ratio and score statistics under this null hypothesis is incorrect because the null is on the boundary of the parameter space. During the last two decades many tests have been proposed to overcome this diffic...
متن کاملRobust Significance Testing in Sparse and High Dimensional Linear Models
Classical statistical theory offers validity under restricted assumptions. However, in practice, it is a common approach to perform statistical analysis based on data-driven model selection [1], which guarantees none of results of classical statistical theory. Those results include hypothesis testings and confidence intervals which are useful tools of measuring fitness of models. Considering th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of the American Statistical Association
سال: 2020
ISSN: 0162-1459,1537-274X
DOI: 10.1080/01621459.2019.1660172